当前位置: 油气田化学研究所
郑俊杰
作者: 发布者:赵小明 发布时间:2025-01-08 访问次数:20

职称:教授

单位:油气田化学研究所

最高学历/学位:博士研究生/工学博士

学科:石油与天然气工程学科

所学专业:化学工程

电子邮箱:zhengjunjie@upc.edu.cn; zhengjunjieupc@126.com

联系电话:18801970140

地址邮编:山东省青岛市西海岸新区长江西路66号中国石油大学(华东)石油工程学院,266580

  • 个人主页
  • 学习与工作经历
    2010.9-2014.6,上海交通大学,热能与动力工程,学士;
    2014.8-2018.11,新加坡国立大学,化学工程,博士;
    2018.12-2024.12,新加坡国立大学,化学与生物分子工程系,博士后研究员;
    2025.1-至今,中国石油大学(华东),石油工程学院,教授;
  • 研究方向
    长期致力于非常规油气开发利用和CCUS理论与技术研究,服务能源与环境可持续发展,具体方向包括: 
    (1) 二氧化碳捕集、利用与封存(CCUS)
    (2) 天然气水合物开发利用
    (3) 低品位天然气(如煤矿瓦斯等)回收利用
    (4) 天然气、氢气高效储运等
    欢迎有油气类、化工类、能源动力类、土木类、海工类、地球科学类等相关学科背景的莘莘学子报考硕士、博士研究生。
  • 招生方向
  • 主讲课程
  • 学术兼职
    1. 第五届国际深水油气工程前沿技术研讨会暨第四届国际水合物青年论坛,“水合物新技术”分会场主席
    2. 第十届国际气体水合物大会工作委员会成员
    3. 美国化学工程学会新加坡分会2018年会工作委员会成员
    4. Chemical Engineering Journal,Applied Energy,Energy Conversion and Management 等近20种工程领域国际知名SCI期刊审稿人
  • 指导研究生
  • 承担科研课题
    1. 国家海外高层次人才引进计划(青年项目),2025-2027,主持;
    2. 山东省泰山学者青年专家资助项目,2025-2027,主持;
    3. 新加坡科技部(A*STAR)重大项目,2022-2024,参与;
    4. 新加坡国家研究基金(NRF)重大项目,2019-2023,参与;
    5. 新加坡教育部(MOE)一般性项目,2018-2021,参与;
    6. 埃克森美孚公司横向项目,2019-2024,参与;
  • 获奖情况
    1. 国际水合物大会最佳博士论文奖(每三年全球遴选 2~3 名),2023;
    2. 美国化工学会优秀论文奖(新加坡会区该年度两名获奖者之一),2019;
    3. 《Advances in Applied Energy》期刊论文高被引奖,2024;
    4. 《Energy and Fuels》期刊论文高被引奖,2022;
  • 荣誉称号
    1. 国家高层次青年人才,2024;
    2. 山东省泰山学者青年专家,2024;
    3. 中国石油大学(华东)光华学者特聘专家,2024;
    4. 美国化工学会优秀青年学者(新加坡会区该年度两名入选者之一),2023;
    5. ExxonMobil Emerging Energy Research Fellow,2019;
  • 著作
    1. Zheng, J.; Babu, P.; Linga, P.; Thermodynamics and applications of CO2 hydrates, in book: Aresta M., Dibenedetto A., Quaranta E. (eds) Reaction Mechanisms in Carbon Dioxide Conversion. Springer, Berlin, Heidelberg, 2016. Pages: 373-402.
  • 论文
    论文列表详见https://orcid.org/0000-0002-0398-1970
    代表性论文如下:
    1. Zheng J.#, Lee Y. K.#, Babu P., Zhang P., Linga P.*; Impact of fixed bed reactor orientation, liquid saturation, bed volume and temperature on the clathrate hydrate process for pre-combustion carbon capture. Journal of Natural Gas Science and Engineering 2016, 35, 1499-1510. 
    2. Zheng J., Zhang P., Linga P.*; Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures. Applied Energy 2017, 194, 267-278.(2017年ESI高被引)
    3. Zheng J., Bhatnagar K., Khurana M., Zhang P., Zhang B.Y.*, Linga P.*; Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives. Applied Energy 2018, 217, 377-389.
    4. Zheng J.#, Zhang B.#, Wu Q., Linga P.*; Kinetic evaluation of cyclopentane as a promoter for CO2 capture via clathrate process employing different contact modes. ACS Sustainable Chemistry & Engineering 2018, 6 (9), 11913–11921. 
    5. Zheng J.#, Loganathan N.#, Zhao J., Linga P.*; Clathrate hydrate formation of CO2/CH4 mixture at room temperature: Application to direct transport of CO2-containing natural gas. Applied Energy 2019, 249, 190-203. 
    6. Chen B., Sun H., Zheng J.*, Yang M.*; New insights on water-gas flow and hydrate decomposition behaviors in natural gas hydrates deposits with various saturations. Applied Energy, 2020, 114185. 
    7. Zheng J., Chong Z. R., Qureshi M. F., Linga P.*; Carbon dioxide sequestration via gas hydrates: A potential pathway towards decarbonization. Energy & Fuels 2020, 34 (9), 10529-10546. (ESI高被引,被引300余次)
    8. Kim H., Zheng J.*, Yin Z., Kumar S., Tee J., Seo Y., Linga P.*; An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: application for cold storage and transport. Applied Energy 2022, 308, 118397. 
    9. Liao Y., Zheng J.*, Wang Z., Sun B.*, Sun X., Linga P.*; Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media. Applied Energy, 2022, 312, 118804. 
    10. Kim, H.; Zheng, J.*; Babu, P.; Kumar, S.; Tee, J.; Linga, P.*; Key factors influencing the kinetics of tetra-n-butylammonium bromide hydrate formation as a cold storage and transport material. Chemical Engineering Journal, 2022, 446, 136843.
    11. Kim, H.; Zheng, J.*; Yin, Z.; Babu, P.; Kumar, S.; Tee, J.; Linga, P.*; Semi-clathrate hydrate slurry as a cold energy storage and transport medium: Rheological study, energy analysis and enhancement by amino acid. Energy, 2023, 264, 126226. 
    12. Liu Z., Zheng J.*, Wang Z., Gao Y., Sun B.*, Liao Y. and Linga P.*; Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs. Applied Energy, 2023, 341: 121064. (获第十届国际气体水合物大会最佳墙报奖)
    13. Ouyang Q.; Zheng J.*; Pandey J. S.; von Solms N.*; Linga P.*; Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment. Applied Energy, 2024, 366: 123300. (获第十届国际气体水合物大会最佳墙报奖)
    14. Zheng J.#; Zhang Y.#; Zhao L.*; Li H.; Zhao R.; Nie X.; Deng S.; Linga P.*; A hydrate-based post-combustion capture system integrated with cold energy: Thermodynamic analysis, process modeling and energy optimization. Energy Conversion and Management, 2024, 314: 118656.
    15. Lan X.; Chen J.*; Li D.; Zheng J.*; Linga P.*; Gas storage via clathrate hydrates: Advances, challenges, and prospects. Gas Science and Engineering, 2024, 129: 205388.
  • 专利
    1. Novel Prototype Designs and Method to Produce the Semiclathrate Hydrate Thermal Energy Carriers for Cooling Applications, 2023,申请号: 10202301445P,3/4
  • 学术交流
    1. Clathrate hydrates in porous media: application to low-carbon fuels in clean energy transition. Keynote Speaker, International Multiphase Flow Technology Forum 2024 (IMFTF2024), Jul 02-05, 2024, Dali, China.
    2. Forming carbon dioxide hydrates in deep marine sediment: a potential pathway toward decarbonization. Applied Energy Symposium: Low Carbon Cities & Urban Energy Systems (CUE2024), May 11-13, 2024, Shenzhen, China.
    3. Semi-clathrate hydrates for cold storage and cooling applications: Insights from kinetic and rheological Studies. Fifth International Technical Symposium on Deepwater Oil and Gas Engineering and the Fourth International Youth Forum on Gas Hydrate, Oct 13-15, 2023, Qingdao, China.
    4. Kinetic evaluation of tetra-n-butylammonium bromide hydrate formation: Application for cold energy transport and distribution. 10th International Conference on Gas Hydrates (ICGH10), Jul 9-14, 2023, Singapore.
    5. Formation kinetics and flow behavior of semi-clathrate hydrate slurry in a flow loop: application for cold energy transport and distribution. 2022 AIChE Annual Meeting, Phoenix, Nov 13-18, 2022.
    6. Rheological characteristics of tetra-n-butylammonium bromide hydrate as a thermal energy carrier. 2022 AIChE Annual Meeting, Phoenix, Nov 13-18, 2022.
    7. Kinetic study of tetra-n-butylammonium bromide hydrate as a cold storage and transport material. 12th International Conference on Applied Energy (ICAE2020), Bangkok, Dec 1-10, 2020.
    8. Natural gas storage via clathrate hydrate formation: effect of carbon dioxide and experimental conditions. 10th International Conference on Applied Energy (ICAE2018), Aug 22-25, 2018, Hong Kong, China.
    9. Systematic evaluation of semiclathrate-based pre-combustion CO2 capture in presence of Tetra-N-Butylammonium Fluoride (TBAF): Effect of TBAF concentration and kinetic additives. World Engineers Summit – Applied Energy Symposium & Forum: Low Carbon Cities & Urban Energy Joint Conference (WES-CUE2017), Jul 19–21, 2017, Singapore.
    10. Kinetic evaluation of clathrate process for pre-combustion capture in fixed bed reactor employing cyclopentane and cyclopentane/tetrahydrofuran mixture as promoter. 9th International Conference on Gas Hydrates (ICGH9), Jun 25-30, 2017, Denver, USA.
    11. Kinetic study of semiclathrate-based CO2 capture from fuel gas in the presence of Tetra-N-Butylammonium Fluoride (TBAF). 15th International Conference on Sustainable Energy Technologies (SET2016), Jul 19-22, 2016, Singapore.
  • 个人风采