当前位置: 智能油气田研究所
孙文跃
作者: 发布者:于梦飞 发布时间:2023-02-16 访问次数:5266

职称:教授

单位:智能油气田研究所

最高学历/学位:博士

学科:海洋油气工程学科,石油与天然气工程领域

所学专业:能源与资源工程

电子邮箱:wenyue@upc.edu.cn

联系电话:

地址邮编:山东省青岛市经济技术开发区长江西路66号,266580

  • 个人主页
  • 学习与工作经历
    学习经历:
    - 2014-2018,斯坦福大学,能源与资源工程,博士
    - 2012-2014,斯坦福大学,石油工程,硕士
    - 2008-2012,北京大学,力学,学士


    工作经历:
    - 2022.12-至今,中国石油大学(华东),石油工程学院,教授,博导
    - 2020.02-2022.09,Xecta Digital Labs. (休斯顿),高级研发工程师
    - 2018.07-2020.02,Anadarko国际石油公司(休斯顿),油藏工程师
    - 2015-2017(暑期),雪佛龙石油公司、壳牌石油公司(休斯顿),科研实习生

  • 研究方向
    - 油藏历史拟合、生产优化及不确定性分析;
    - 智能油气田开发理论与技术;
    - 深度学习在油藏模拟中的应用;
    - 基于最新技术架构的石油工程领域专业软件研发
  • 招生方向
  • 主讲课程
  • 学术兼职
    - 2022-2023,Technical committee for International Petroleum Technology Conference (IPTC), Bangkok, Thailand
    - SPE J.,SPE Reservoir Eval. Eng., Comput. Geosci., JCP等期刊审稿人
  • 指导研究生
  • 承担科研课题
    海外引进高层次人才项目,2022-2027,负责人
  • 获奖情况
    - SPE Journal Outstanding Technical Editor Award, 2018
    - Stanford University Henry J. Ramey, Jr. Fellowship Award, 2017
    - 1st place, SPE International Paper Contest, PhD Section, 2017
  • 荣誉称号
    中国石油大学(华东)光华学者
  • 著作
  • 论文
    - Guo, Z., Sun, W. & Sankaran, S. (2023). Reservoir Modeling, History Matching, and Characterization with a Reservoir Graph Network Model. SPE Reservoir Evaluation & Engineering, 1-13.
    - Guo, Z., Sun, W. & Sankaran, S. (2022). Efficient Reservoir Management with a Reservoir Graph Network Model. In SPE Western Regional Meeting.
    - Nagao, M., Sun, W. & Sankaran, S. (2022). Data-Driven Discovery of Physics for Reservoir Surveillance. In SPE Western Regional Meeting.
    - Sankaran, S., Molinari, D., Zalavadia, H., Stoddard, T., Sun, W., Singh, G. & James, C. (2022) Unlocking Unconventional Production Optimization Opportunities Using Reduced Physics Models for Well Performance Analysis–Case Study. In International Petroleum Technology Conference.
    - Sun, W., & Sankaran, S. (2021). A Graph Network Based Approach for Reservoir Modeling. In SPE Annual Technical Conference and Exhibition. 
    - Sankaran, S. & Sun, W. (2020). A Flow Network Model Based on Time of Flight for Reservoir Management. In Abu Dhabi International Petroleum Exhibition & Conference.
    - Jiang, S., Sun, W. & Durlofsky, L.J. (2020). A Data-Space Inversion Procedure for Well Control Optimization and Closed-Loop Reservoir Management. Computational Geosciences 24, 361-379.
    - Zalavadia, H., Sankaran, S., Kara, M., Sun, W. & Gildin, E.. (2019) A Hybrid Modeling Approach to Production Control Optimization Using Dynamic Mode Decomposition. In SPE Annual Technical Conference and Exhibition.
    - Liu, Y., Sun, W., & Durlofsky, L. J. (2019). A Deep-Learning-Based Geological Parameterization for History Matching Complex Models. Mathematical Geosciences, 51, 725-766.
    - He, J., Sun, W., & Wen, X. H. (2019). Rapid Forecast Calibration Using Nonlinear Simulation Regression with Localization. In SPE Reservoir Simulation Conference. 
    - Sun, W., & Durlofsky, L. J. (2019). Data-Space Approaches for Uncertainty Quantification of CO2 Plume Location in Geological Carbon Storage. Advances in Water Resources, 123, 234-255.
    - Jiang, S., Sun, W., & Durlofsky, L. J. (2018). A Data-Space Approach for Well Control Optimization under Uncertainty. In ECMOR XVI-16th European Conferences on the Mathematics of Oil Recovery.
    - Sun, W., Hui, M. H., & Durlofsky, L. J. (2017). Production forecasting and uncertainty quantification for naturally fractured reservoirs using a new data-space inversion procedure. Computational Geosciences, 21(5-6), 1443-1458.
    - Sun, W., & Durlofsky, L. J. (2017). A New Data-Space Inversion Procedure for Efficient Uncertainty Quantification in Subsurface Flow Problems. Mathematical Geosciences, 49(6), 679-715.
    - Sun, W., Vink, J. C. & Gao, G. (2017). A Practical Method to Mitigate Spurious Uncertainty Reduction in History Matching Workflows with Imperfect Reservoir Models. In SPE Reservoir Simulation Conference.
  • 专利
    - Reduced physics well production monitoring. US Patent 11,514,216.
    - Graph network fluid flow monitoring, US Patent 11,501,043.
  • 学术交流
  • 个人风采